Coordinated regulation of endocannabinoid-mediated retrograde synaptic suppression in the cerebellum by neuronal and astrocytic monoacylglycerol lipase
نویسندگان
چکیده
The endocannabinoid 2-arachidonoylglycerol (2-AG) mediates retrograde synaptic depression including depolarization-induced suppression of excitation (DSE) and inhibition (DSI). 2-AG is degraded primarily by monoacylglycerol lipase (MAGL), which is expressed in neurons and astrocytes. Using knockout mice in which MAGL is deleted globally or selectively in neurons or astrocytes, we investigated the relative contribution of neuronal and astrocytic MAGL to the termination of DSE and DSI in Purkinje cells (PCs) in cerebellar slices. We report that neuronal MAGL plays a predominant role in terminating DSE at climbing fiber (CF) to PC synapses, while both neuronal and astrocytic MAGL significantly contributes to the termination of DSE at parallel fiber (PF) to PC synapses and DSI at putative Stellate cell to PC synapses. Thus, DSE and DSI at different synapses is not uniformly affected by global and cell type-specific knockout of MAGL. Additionally, MAGL global knockout, but not cell type-specific knockout, caused tonic activation and partial desensitization of the CB1 receptor at PF-PC synapses. This tonic CB1 activation is mediated by 2-AG since it was blocked by the diacylglycerol lipase inhibitor DO34. Together, these results suggest that both neuronal and astrocytic MAGL contribute to 2-AG clearance and prevent CB1 receptor over-stimulation in the cerebellum.
منابع مشابه
Neuronal and Astrocytic Monoacylglycerol Lipase Limit the Spread of Endocannabinoid Signaling in the Cerebellum123
Endocannabinoids are diffusible lipophilic molecules that may spread to neighboring synapses. Monoacylglycerol lipase (MAGL) is the principal enzyme that degrades the endocannabinoid 2-arachidonoylglycerol (2-AG). Using knock-out mice in which MAGL is deleted globally or selectively in neurons and astrocytes, we investigated the extent to which neuronal and astrocytic MAGL limit the spread of 2...
متن کاملMetabolic Interplay between Astrocytes and Neurons Regulates Endocannabinoid Action.
The endocannabinoid 2-arachidonoylglycerol (2-AG) is a retrograde lipid messenger that modulates synaptic function, neurophysiology, and behavior. 2-AG signaling is terminated by enzymatic hydrolysis-a reaction that is principally performed by monoacylglycerol lipase (MAGL). MAGL is broadly expressed throughout the nervous system, and the contributions of different brain cell types to the regul...
متن کاملPresynaptic monoacylglycerol lipase activity determines basal endocannabinoid tone and terminates retrograde endocannabinoid signaling in the hippocampus.
Endocannabinoids function as retrograde messengers and modulate synaptic transmission through presynaptic cannabinoid CB1 receptors. The magnitude and time course of endocannabinoid signaling are thought to depend on the balance between the production and degradation of endocannabinoids. The major endocannabinoid 2-arachidonoylglycerol (2-AG) is hydrolyzed by monoacylglycerol lipase (MGL), whic...
متن کاملSynapse type-independent degradation of the endocannabinoid 2-arachidonoylglycerol after retrograde synaptic suppression.
The endocannabinoid 2-arachidonoylglycerol (2-AG) mediates retrograde synaptic suppression. Although the mechanisms of 2-AG production are well characterized, how 2-AG is degraded is less clearly understood. Here we found that expression of the 2-AG hydrolyzing enzyme monoacylglycerol lipase (MGL) was highly heterogeneous in the cerebellum, being rich within parallel fiber (PF) terminals, weak ...
متن کاملThe Endocannabinoid 2-Arachidonoylglycerol Produced by Diacylglycerol Lipase α Mediates Retrograde Suppression of Synaptic Transmission
Endocannabinoids are released from postsynaptic neurons and cause retrograde suppression of synaptic transmission. Anandamide and 2-arachidonoylglycerol (2-AG) are regarded as two major endocannabinoids. To determine to what extent 2-AG contributes to retrograde signaling, we generated and analyzed mutant mice lacking either of the two 2-AG synthesizing enzymes diacylglycerol lipase alpha (DGLa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016